Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Emerg Microbes Infect ; 12(1): 2164742, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2327271

ABSTRACT

Viral envelope glycoproteins are crucial for viral infections. In the process of enveloped viruses budding and release from the producer cells, viral envelope glycoproteins are presented on the viral membrane surface as spikes, promoting the virus's next-round infection of target cells. However, the host cells evolve counteracting mechanisms in the long-term virus-host co-evolutionary processes. For instance, the host cell antiviral factors could potently suppress viral replication by targeting their envelope glycoproteins through multiple channels, including their intracellular synthesis, glycosylation modification, assembly into virions, and binding to target cell receptors. Recently, a group of studies discovered that some host antiviral proteins specifically recognized host proprotein convertase (PC) furin and blocked its cleavage of viral envelope glycoproteins, thus impairing viral infectivity. Here, in this review, we briefly summarize several such host antiviral factors and analyze their roles in reducing furin cleavage of viral envelope glycoproteins, aiming at providing insights for future antiviral studies.


Subject(s)
COVID-19 , Ebolavirus , HIV-1 , Hemorrhagic Fever, Ebola , Virus Diseases , Humans , Furin/metabolism , Viral Envelope Proteins/metabolism , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , Glycoproteins
2.
J Cell Sci ; 136(6)2023 03 15.
Article in English | MEDLINE | ID: covidwho-2286166

ABSTRACT

The coronavirus SARS-CoV-2, the agent of the deadly COVID-19 pandemic, is an enveloped virus propagating within the endocytic and secretory organelles of host mammalian cells. Enveloped viruses modify the ionic homeostasis of organelles to render their intra-luminal milieu permissive for viral entry, replication and egress. Here, we show that infection of Vero E6 cells with the delta variant of the SARS-CoV-2 alkalinizes the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) as well as lysosomes, mimicking the effect of inhibitors of vacuolar proton ATPases. We further show the envelope protein of SARS-CoV-2 accumulates in the ERGIC when expressed in mammalian cells and selectively dissipates the ERGIC pH. This viroporin action is prevented by mutations of Val25 but not Asn15 within the channel pore of the envelope (E) protein. We conclude that the envelope protein acts as a proton channel in the ERGIC to mitigate the acidity of this intermediate compartment. The altered pH homeostasis of the ERGIC likely contributes to the virus fitness and pathogenicity, making the E channel an attractive drug target for the treatment of COVID-19.


Subject(s)
COVID-19 , Viral Envelope Proteins , Animals , Humans , Viral Envelope Proteins/metabolism , Viroporin Proteins/metabolism , COVID-19/metabolism , Protons , Pandemics , SARS-CoV-2/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Mammals/metabolism
3.
J Phys Chem Lett ; 14(13): 3230-3235, 2023 Apr 06.
Article in English | MEDLINE | ID: covidwho-2280490

ABSTRACT

The spread of the monkeypox virus has surged during the unchecked COVID-19 epidemic. The most crucial target is the viral envelope protein, p37. However, lacking p37's crystal structure is a significant hurdle to rapid therapeutic discovery and mechanism elucidation. Structural modeling and molecular dynamics (MD) of the enzyme with inhibitors reveal a cryptic pocket occluded in the unbound structure. For the first time, the inhibitor's dynamic flip from the active to the cryptic site enlightens p37's allosteric site, which squeezes the active site, impairing its function. A large force is needed for inhibitor dissociation from the allosteric site, ushering in its biological importance. In addition, hot spot residues identified at both locations and discovered drugs more potent than tecovirimat may enable even more robust inhibitor designs against p37 and accelerate the development of monkeypox therapies.


Subject(s)
COVID-19 , Molecular Dynamics Simulation , Humans , Allosteric Site , Catalytic Domain , Monkeypox virus , Protein Binding , Viral Envelope Proteins/metabolism
4.
Curr Med Chem ; 29(4): 700-718, 2022.
Article in English | MEDLINE | ID: covidwho-2277069

ABSTRACT

Type Ⅰ enveloped viruses bind to cell receptors through surface glycoproteins to initiate infection or undergo receptor-mediated endocytosis and initiate membrane fusion in the acidic environment of endocytic compartments, releasing genetic material into the cell. In the process of membrane fusion, envelope protein exposes fusion peptide, followed by an insertion into the cell membrane or endosomal membrane. Further conformational changes ensue in which the type 1 envelope protein forms a typical six-helix bundle structure, shortening the distance between viral and cell membranes so that fusion can occur. Entry inhibitors targeting viral envelope proteins, or host factors, are effective antiviral agents and have been widely studied. Some have been used clinically, such as T20 and Maraviroc for human immunodeficiency virus 1 (HIV-1) or Myrcludex B for hepatitis D virus (HDV). This review focuses on entry inhibitors that target the six-helical bundle core against highly pathogenic enveloped viruses with class I fusion proteins, including retroviruses, coronaviruses, influenza A viruses, paramyxoviruses, and filoviruses.


Subject(s)
HIV-1 , Virus Internalization , Endocytosis , HIV-1/metabolism , Humans , Membrane Fusion , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/pharmacology
5.
Viruses ; 15(1)2023 Jan 02.
Article in English | MEDLINE | ID: covidwho-2216942

ABSTRACT

Zika virus (ZIKV) is an RNA-enveloped virus that belongs to the Flavivirus genus, and ZIKV infections potentially induce severe neurodegenerative diseases and impair male fertility. Palmitoylation is an important post-translational modification of proteins that is mediated by a series of DHHC-palmitoyl transferases, which are implicated in various biological processes and viral infections. However, it remains to be investigated whether palmitoylation regulates ZIKV infections. In this study, we initially observed that the inhibition of palmitoylation by 2-bromopalmitate (2-BP) enhanced ZIKV infections, and determined that the envelope protein of ZIKV is palmitoylated at Cys308. ZDHHC11 was identified as the predominant enzyme that interacts with the ZIKV envelope protein and catalyzes its palmitoylation. Notably, ZDHHC11 suppressed ZIKV infections in an enzymatic activity-dependent manner and ZDHHC11 knockdown promoted ZIKV infection. In conclusion, we proposed that the envelope protein of ZIKV undergoes a novel post-translational modification and identified a distinct mechanism in which ZDHHC11 suppresses ZIKV infections via palmitoylation of the ZIKV envelope protein.


Subject(s)
Flavivirus , Zika Virus Infection , Zika Virus , Humans , Male , Antibodies, Viral/metabolism , Flavivirus/metabolism , Proteins/metabolism , Viral Envelope Proteins/metabolism , Zika Virus/physiology
6.
Viruses ; 15(1)2023 Jan 12.
Article in English | MEDLINE | ID: covidwho-2200877

ABSTRACT

The ß-Coronavirus mouse hepatitis virus (MHV-A59)-RSA59 has a patent stretch of fusion peptide (FP) containing two consecutive central prolines (PP) in the S2 domain of the Spike protein. Our previous studies compared the PP-containing fusogenic-demyelinating strain RSA59(PP) to its one proline-deleted mutant strain RSA59(P) and one proline-containing non-fusogenic non-demyelinating parental strain RSMHV2(P) to its one proline inserted mutant strain RSMHV2(PP). These studies highlighted the crucial role of PP in fusogenicity, hepato-neuropathogenesis, and demyelination. Computational studies combined with biophysical data indicate that PP at the center of the FP provides local rigidity while imparting global fluctuation to the Spike protein that enhances the fusogenic properties of RSA59(PP) and RSMHV2(PP). To elaborate on the understanding of the role of PP in the FP of MHV, the differential neuroglial tropism of the PP and P mutant strains was investigated. Comparative studies demonstrated that PP significantly enhances the viral tropism for neurons, microglia, and oligodendrocytes. PP, however, is not essential for viral tropism for either astroglial or oligodendroglial precursors or the infection of meningeal fibroblasts in the blood-brain and blood-CSF barriers. PP in the fusion domain is critical for promoting gliopathy, making it a potential region for designing antivirals for neuro-COVID therapy.


Subject(s)
Murine hepatitis virus , Spike Glycoprotein, Coronavirus , Viral Tropism , Animals , Mice , Murine hepatitis virus/physiology , Peptides/metabolism , Proline , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/metabolism
7.
Viruses ; 14(11)2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2110273

ABSTRACT

The wild-type SARS-CoV-2 Spike-based vaccines authorized so far have reduced COVID-19 severity, but periodic boosts are required to counteract the decline in immunity. An accelerated rate of immune escape to vaccine-elicited immunity has been associated with Spike protein antigenic shifts, as seen in the Omicron variant of concern and its sublineages, demanding the development of Omicron Spike-based vaccines. Herein, we review the evidence in animal models and topline results from ongoing clinical trials with such updated vaccines, discussing the pros and cons for their deployment.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , COVID-19 Vaccines , Viral Envelope Proteins/metabolism , Antibodies, Viral/metabolism , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Neutralizing/metabolism , Spike Glycoprotein, Coronavirus/genetics
8.
Chem Biol Interact ; 368: 110244, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2095126

ABSTRACT

Interactions between the human angiotensin-converting enzyme 2 (ACE2) and the RBD region of the SARS-CoV-2 Spike protein are critical for virus entry into the host cell. The objective of this work was to identify some of the most relevant SARS-CoV-2 Spike variants that emerged during the pandemic and evaluate their binding affinity with human variants of ACE2 since some ACE2 variants can enhance or reduce the affinity of the interaction between the ACE2 and S proteins. However, no information has been sought to extrapolate to different variants of SARS-CoV-2. Therefore, to understand the impact on the affinity of the interaction between ACE2 protein variants and SARS-CoV-2 protein S variants, molecular docking was used in this study to predict the effects of five mutations of ACE2 when they interact with Alpha, Beta, Delta, Omicron variants and a hypothetical variant, which present mutations in the RBD region of the SARS-CoV-2 Spike protein. Our results suggest that these variants could alter the interaction of the Spike and the human ACE2 protein, losing or creating new inter-protein contacts, enhancing viral fitness by improving binding affinity, and leading to an increase in infectivity, virulence, and transmission. This investigation highlighted that the S19P mutation of ACE2 decreases the binding affinity between the ACE2 and Spike proteins in the presence of the Beta variant and the wild-type variant of SARS-CoV-2 isolated in Wuhan-2019. The R115Q mutation of ACE2 lowers the binding affinity of these two proteins in the presence of the Beta and Delta variants. Similarly, the K26R mutation lowers the affinity of the interaction between the ACE2 and Spike proteins in the presence of the Alpha variant. This decrease in binding affinity is probably due to the lack of interaction between some of the key residues of the interaction complex between the ACE2 protein and the RBD region of the SARS-CoV-2 Spike protein. Therefore, ACE2 mutations appear in the presence of these variants, they could suggest an intrinsic resistance to COVID-19 disease. On the other hand, our results suggested that the K26R, M332L, and K341R mutations of ACE2 expressively showed the affinity between the ACE2 and Spike proteins in the Alpha, Beta, and Delta variants. Consequently, these ACE2 mutations in the presence of the Alpha, Beta, and delta variants of SARS-CoV-2 could be more infectious and virulent in human cells compared to the SARS-CoV-2 isolated in Wuhan-2019 and it could have a negative prognosis of the disease. Finally, the Omicron variant in interaction with ACE2 WT, S19P, R115Q, M332L, and K341R mutations of ACE2 showed a significant decrease in binding affinity. This could be consistent that the Omicron variant causes less severe symptoms than previous variants. On the other hand, our results suggested Omicron in the complex with K26R, the binding affinity is increased between ACE2/RBD, which could indicate a negative prognosis of the disease in people with these allelic conditions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Humans , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Molecular Docking Simulation , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virulence/genetics
9.
Int J Mol Sci ; 23(21)2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2090211

ABSTRACT

Porcine reproductive and respiratory syndrome virus is a positive-stranded RNA virus of the family Arteriviridae. The Gp5/M dimer, the major component of the viral envelope, is required for virus budding and is an antibody target. We used alphafold2, an artificial-intelligence-based system, to predict a credible structure of Gp5/M. The short disulfide-linked ectodomains lie flat on the membrane, with the exception of the erected N-terminal helix of Gp5, which contains the antibody epitopes and a hypervariable region with a changing number of carbohydrates. The core of the dimer consists of six curved and tilted transmembrane helices, and three are from each protein. The third transmembrane regions extend into the cytoplasm as amphiphilic helices containing the acylation sites. The endodomains of Gp5 and M are composed of seven ß-strands from each protein, which interact via ß-strand seven. The area under the membrane forms an open cavity with a positive surface charge. The M and Orf3a proteins of coronaviruses have a similar structure, suggesting that all four proteins are derived from the same ancestral gene. Orf3a, like Gp5/M, is acylated at membrane-proximal cysteines. The role of Gp5/M during virus replication is discussed, in particular the mechanisms of virus budding and models of antibody-dependent virus neutralization.


Subject(s)
Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Swine , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Viral Envelope Proteins/metabolism , Epitopes , Virus Replication
10.
Commun Biol ; 5(1): 1096, 2022 Oct 16.
Article in English | MEDLINE | ID: covidwho-2077125

ABSTRACT

Herpes simplex virus (HSV) receptor engagement activates phospholipid scramblase triggering Akt translocation to the outer leaflet of the plasma membrane where its subsequent phosphorylation promotes viral entry. We hypothesize that this previously unrecognized outside-inside signaling pathway is employed by other viruses and that cell-impermeable kinase inhibitors could provide novel antivirals. We synthesized a cell-impermeable analog of staurosporine, CIMSS, which inhibited outer membrane HSV-induced Akt phosphorylation and blocked viral entry without inducing apoptosis. CIMSS also blocked the phosphorylation of 3-phosphoinositide dependent protein kinase 1 and phospholipase C gamma, which were both detected at the outer leaflet following HSV exposure. Moreover, vesicular stomatitis virus pseudotyped with SARS-CoV-2 spike protein (VSV-S), but not native VSV or VSV pseudotyped with Ebola virus glycoprotein, triggered this scramblase-Akt outer membrane signaling pathway. VSV-S and native SARS-CoV-2 infection were inhibited by CIMSS. Thus, CIMSS uncovered unique extracellular kinase processes linked to HSV and SARS-CoV-2 entry.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Glycoproteins/metabolism , Humans , Phosphatidylinositols , Phospholipase C gamma/metabolism , Phospholipid Transfer Proteins , Proto-Oncogene Proteins c-akt/metabolism , Spike Glycoprotein, Coronavirus , Staurosporine/pharmacology , Viral Envelope Proteins/metabolism
11.
Drug Dev Ind Pharm ; 48(10): 539-551, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2069979

ABSTRACT

Spike glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds angiotensin-converting enzyme-2 (ACE-2) receptors via its receptor-binding domain (RBD) and mediates virus-to-host cell fusion. Recently emerged omicron variant of SARS-CoV-2 possesses around 30 mutations in spike protein where N501Y tremendously increases viral infectivity and transmission. Lectins interact with glycoproteins and mediate innate immunity displaying antiviral, antibacterial, and anticarcinogenic properties. In this study, we analyzed the potential of lectin, and lectin-antibody (spike-specific) complex to inhibit the ACE-2 binding site of wild and N501Y mutated spike protein by utilizing in silico molecular docking and simulation approach. Docking of lectin at reported ACE-2 binding spike-RBD residues displayed the ZDock scores of 1907 for wild and 1750 for N501Y mutated spike-RBD. Binding of lectin with antibody to form proposed dyad complex gave ZDock score of 1174 revealing stable binding. Docking of dyad complex with wild and N501Y mutated spike-RBD, at lectin and antibody individually, showed high efficiency binding hence, effective structural inhibition of spike-RBD. MD simulation of 100 ns of each complex proved high stability of complexes with RMSD values ranging from 0.2 to 1.5 nm. Consistent interactions of lead ACE-2 binding spike residues with lectin during simulation disclosed efficient structural inhibition by lectin against formation of spike RBD-ACE-2 complex. Hence, lectins along with their ability to induce innate immunity against spike glycoprotein can structurally inhibit the spike-RBD when given as lectin-antibody dyad system and thus can be developed into a dual effect treatment against COVID-19. Moreover, the high binding specificity of this system with spike-RBD can be exploited for development of diagnostic and drug-delivery systems.


Subject(s)
COVID-19 Drug Treatment , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2 , Antiviral Agents/pharmacology , Lectins/metabolism , Molecular Docking Simulation , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Protein Structure, Tertiary , Binding Sites , Protein Binding , Antibodies/metabolism
12.
J Virol ; 96(20): e0131822, 2022 10 26.
Article in English | MEDLINE | ID: covidwho-2053123

ABSTRACT

Pseudorabies virus (PRV), which is extremely infectious and can infect numerous mammals, has a risk of spillover into humans. Virus-host interactions determine viral entry and spreading. Here, we showed that neuropilin-1 (NRP1) significantly potentiates PRV infection. Mechanistically, NRP1 promoted PRV attachment and entry, and enhanced cell-to-cell fusion mediated by viral glycoprotein B (gB), gD, gH, and gL. Furthermore, through in vitro coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays, NRP1 was found to physically interact with gB, gD, and gH, and these interactions were C-end Rule (CendR) motif independent, in contrast to currently known viruses. Remarkably, we illustrated that the viral protein gB promotes NRP1 degradation via a lysosome-dependent pathway. We further demonstrate that gB promotes NRP1 degradation in a furin-cleavage-dependent manner. Interestingly, in this study, we generated gB furin cleavage site (FCS)-knockout PRV (Δfurin PRV) and evaluated its pathogenesis; in vivo, we found that Δfurin PRV virulence was significantly attenuated in mice. Together, our findings demonstrated that NRP1 is an important host factor for PRV and that NRP1 may be a potential target for antiviral intervention. IMPORTANCE Recent studies have shown accelerated PRV cross-species spillover and that PRV poses a potential threat to humans. PRV infection in humans always manifests as a high fever, tonic-clonic seizures, and encephalitis. Therefore, understanding the interaction between PRV and host factors may contribute to the development of new antiviral strategies against PRV. NRP1 has been demonstrated to be a receptor for several viruses that harbor CendR, including SARS-CoV-2. However, the relationships between NRP1 and PRV are poorly understood. Here, we found that NRP1 significantly potentiated PRV infection by promoting PRV attachment and enhanced cell-to-cell fusion. For the first time, we demonstrated that gB promotes NRP1 degradation via a lysosome-dependent pathway. Last, in vivo, Δfurin PRV virulence was significantly attenuated in mice. Therefore, NRP1 is an important host factor for PRV, and NRP1 may be a potential target for antiviral drug development.


Subject(s)
COVID-19 , Herpesvirus 1, Suid , Pseudorabies , Mice , Humans , Animals , Herpesvirus 1, Suid/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism , Furin/metabolism , SARS-CoV-2 , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Viral Proteins/metabolism , Antiviral Agents/metabolism , Mammals
13.
Mikrochim Acta ; 189(10): 386, 2022 09 20.
Article in English | MEDLINE | ID: covidwho-2035078

ABSTRACT

A new detection strategy was developed to improve the sensitivity of a lateral flow immunoassay platform utilizing a delayed hydrophobic barrier fabricated with trimethylsilyl cellulose (TMSC). The SARS-CoV-2 spike receptor-binding domain (SARS-CoV-2 SP RBD) antigen was chosen as a model analyte to demonstrate the superior detectability of this scheme. The novel device consists of 2 separate layers, so-called delayed lateral flow immunoassay (d-LFIA). The upper layer is intended for the analyte or sample flow path, where the test solution flows freely straight to the detection zone to bind with the primary antibody. The lower layer, located just underneath, is designed for the SARS-CoV-2 spike receptor-binding domain-conjugated gold nanoparticles (SARS-CoV-2 SP RBD-AuNPs) used for producing a colorimetric signal. This layer is fabricated with a TMSC barrier to time-delay the movement of SARS-CoV-2 SP RBD-AuNPs, thus allowing the antigen to bind with the primary antibody more efficiently. This platform exhibited a 2.6-fold enhancement in the sensitivity and 9.1-fold improvement in the limit of detection (LOD) as compared with the conventional LFIA. In addition, this d-LFIA device was satisfactorily applied to accurate screening of COVID-19 patients.


Subject(s)
COVID-19 , Metal Nanoparticles , Antibodies , COVID-19/diagnosis , Cellulose , Gold , Humans , Immunoassay , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism
14.
Int J Environ Res Public Health ; 19(18)2022 Sep 10.
Article in English | MEDLINE | ID: covidwho-2032939

ABSTRACT

Healthcare workers bear a high risk of infection during epidemics and pandemics such as the current SARS-CoV-2 pandemic. Various new vaccines have been approved. We investigated the influence of the time elapsed since vaccination, as well as of vaccination schema, on health workers' spike antibody levels following their second vaccination. Blood samples were obtained from employees working at a German hospital between August 2021 and December 2021 on average half a year (range 130-280 days) after their second vaccination. Levels of SARS-CoV-2-IgG antibodies (spike and nucleocapsid protein) were qualitatively detected via chemiluminescent immunoassays (CLIAs). A previous infection with SARS-CoV-2 was an exclusion criterion. In total, 545 persons were included in this cross-sectional study. Most participants (97.8%) showed elevated anti-spike concentrations. Anti-spike levels differed significantly among vaccination schemas. Repeated vector vaccinations resulted in lower protective antibody levels. Higher age levels, immunosuppression and a longer time period since the second vaccination resulted in lower anti-spike levels. Women's antibody levels were higher, but not significantly. Since anti-spike levels drop after vaccination, further boosters are required to increase immunoreactivity. If two vector vaccines have been administered, it is possible that an mRNA booster might increase the anti-spike level.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/prevention & control , Cross-Sectional Studies , Female , Health Personnel , Humans , Immunoglobulin G , Nucleocapsid Proteins , RNA, Messenger , SARS-CoV-2 , Vaccination , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
15.
Sci Rep ; 12(1): 15496, 2022 09 15.
Article in English | MEDLINE | ID: covidwho-2028728

ABSTRACT

Since late 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resultant spread of COVID-19 have given rise to a worldwide health crisis that is posing great challenges to public health and clinical treatment, in addition to serving as a formidable threat to the global economy. To obtain an effective tool to prevent and diagnose viral infections, we attempted to obtain human antibody fragments that can effectively neutralize viral infection and be utilized for rapid virus detection. To this end, several human monoclonal antibodies were isolated by bio-panning a phage-displayed human antibody library, Tomlinson I. The selected clones were demonstrated to bind to the S1 domain of the spike glycoprotein of SARS-CoV-2. Moreover, clone A7 in Fab and IgG formats were found to effectively neutralize the binding of S protein to angiotensin-converting enzyme 2 in the low nM range. In addition, this clone was successfully converted to quench-based fluorescent immunosensors (Quenchbodies) that allowed antigen detection within a few minutes, with the help of a handy fluorometer.


Subject(s)
Bacteriophages , Biosensing Techniques , COVID-19 , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , Bacteriophages/metabolism , COVID-19/diagnosis , Humans , Immunoassay , Immunoglobulin Fragments , Immunoglobulin G , Membrane Glycoproteins/metabolism , Peptide Library , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins/metabolism
16.
Microbiol Spectr ; 10(5): e0212922, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019796

ABSTRACT

The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , SARS-CoV-2 , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
17.
Small ; 18(40): e2203746, 2022 10.
Article in English | MEDLINE | ID: covidwho-2013794

ABSTRACT

Bloodstream infection caused by antimicrobial resistance pathogens is a global concern because it is difficult to treat with conventional therapy. Here, scavenger magnetic nanoparticles enveloped by nanovesicles derived from blood cells (MNVs) are reported, which magnetically eradicate an extreme range of pathogens in an extracorporeal circuit. It is quantitatively revealed that glycophorin A and complement receptor (CR) 1 on red blood cell (RBC)-MNVs predominantly capture human fecal bacteria, carbapenem-resistant (CR) Escherichia  coli, and extended-spectrum beta-lactamases-positive (ESBL-positive) E. coli, vancomycin-intermediate Staphylococcus aureus (VISA), endotoxins, and proinflammatory cytokines in human blood. Additionally, CR3 and CR1 on white blood cell-MNVs mainly contribute to depleting the virus envelope proteins of Zika, SARS-CoV-2, and their variants in human blood. Supplementing opsonins into the blood significantly augments the pathogen removal efficiency due to its combinatorial interactions between pathogens and CR1 and CR3 on MNVs. The extracorporeal blood cleansing enables full recovery of lethally infected rodent animals within 7 days by treating them twice in series. It is also validated that parameters reflecting immune homeostasis, such as blood cell counts, cytokine levels, and transcriptomics changes, are restored in blood of the fatally infected rats after treatment.


Subject(s)
Bacteremia , COVID-19 Drug Treatment , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Carbapenems/metabolism , Cytokines/metabolism , Endotoxins/metabolism , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Glycophorins/metabolism , Homeostasis , Humans , Microbial Sensitivity Tests , Opsonin Proteins/metabolism , Rats , Receptors, Complement/metabolism , Rodentia/metabolism , SARS-CoV-2 , Viral Envelope Proteins/metabolism , beta-Lactamases/metabolism
18.
Commun Biol ; 5(1): 766, 2022 07 29.
Article in English | MEDLINE | ID: covidwho-1967631

ABSTRACT

Studying the antibody response to SARS-CoV-2 informs on how the human immune system can respond to antigenic variants as well as other SARS-related viruses. Here, we structurally identified a YYDRxG motif encoded by IGHD3-22 in CDR H3 that facilitates antibody targeting to a functionally conserved epitope on the SARS-CoV-2 receptor binding domain. A computational search for a YYDRxG pattern in publicly available sequences uncovered 100 such antibodies, many of which can neutralize SARS-CoV-2 variants and SARS-CoV. Thus, the YYDRxG motif represents a common convergent solution for the human humoral immune system to target sarbecoviruses including the Omicron variant. These findings suggest an epitope-targeting strategy to identify potent and broadly neutralizing antibodies for design of pan-sarbecovirus vaccines and antibody therapeutics.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes/genetics , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
19.
J Chem Inf Model ; 62(16): 3844-3853, 2022 08 22.
Article in English | MEDLINE | ID: covidwho-1947179

ABSTRACT

On 26 November 2021, the WHO classified the Omicron variant of the SARS-CoV-2 virus (B.1.1.529 lineage) as a variant of concern (VOC) (COVID-19 Variant Data, Department of Health, 2022). The Omicron variant contains as many as 26 unique mutations of effects not yet determined (Venkatakrishnan, A., Open Science Framework, 2021). Out of its total of 34 Spike protein mutations, 15 are located on the receptor-binding domain (S-RBD) (Stanford Coronavirus Antiviral & Resistance Database, 2022) that directly contacts the angiotensin-converting enzyme 2 (ACE2) host receptor and is also a primary target for antibodies. Here, we studied the binding mode of the S-RBD domain of the Spike protein carrying the Omicron mutations and the globular domain of human ACE2 using molecular dynamics (MD) simulations. We identified new and key Omicron-specific interactions such as R493 (of mutation Q493R), which forms salt bridges both with E35 and D38 of ACE2, Y501 (N501Y), which forms an edge-to-face aromatic interaction with Y41, and Y505 (Y505H), which makes an H-bond with E37 and K353. The glycan chains of ACE2 also bind differently in the WT and Omicron variants in response to different charge distributions on the surface of Spike proteins. However, while the Omicron mutations considerably improve the overall electrostatic fit of the two interfaces, the total number of specific and favorable interactions between the two does not increase. The dynamics of the complexes are highly affected too, making the Omicron S-RBD:ACE2 complex more rigid; the two main interaction sites, Patches I and II, isolated in the WT complex, become connected in the Omicron complex through the alternating interaction of R493 and R498 with E35 and D38.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Humans , Mutation , Peptidyl-Dipeptidase A/chemistry , Protein Binding , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism
20.
Commun Biol ; 5(1): 669, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1921727

ABSTRACT

We are amid the historic coronavirus infectious disease 2019 (COVID-19) pandemic. Imbalances in the accessibility of vaccines, medicines, and diagnostics among countries, regions, and populations, and those in war crises, have been problematic. Nanobodies are small, stable, customizable, and inexpensive to produce. Herein, we present a panel of nanobodies that can detect the spike proteins of five SARS-CoV-2 variants of concern (VOCs) including Omicron. Here we show via ELISA, lateral flow, kinetic, flow cytometric, microscopy, and Western blotting assays that our nanobodies can quantify the spike variants. This panel of nanobodies broadly neutralizes viral infection caused by pseudotyped and authentic SARS-CoV-2 VOCs. Structural analyses show that the P86 clone targets epitopes that are conserved yet unclassified on the receptor-binding domain (RBD) and contacts the N-terminal domain (NTD). Human antibodies rarely access both regions; consequently, the clone buries hidden crevasses of SARS-CoV-2 spike proteins that go undetected by conventional antibodies.


Subject(s)
COVID-19 , Single-Domain Antibodies , Antibodies, Viral , Humans , Membrane Glycoproteins/metabolism , Neutralization Tests , SARS-CoV-2/genetics , Single-Domain Antibodies/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL